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Extensive research during the last two decades has
provided unequivocal evidence for the existence of u, §,
and « opioid receptor types and substantial evidence for
the existence of subtypes of each.2-? These advances were
largely dependent on the development of highly selective
receptor ligands which continue to play a centrally
important role in receptor subtype identification and in
the elucidation of theirfunction. The latter includes recent
recognition that opposing tonically active endogenous
opioid systems modulate the mesolimbic dopaminergic
pathway and control reinforcing behavior by mediation of
dopamine release in reward circuits of the brain and that
the “opiatergic tone of the CNS” can be elevated or
depleted by exogenous opioids.1%1! Recent studies have
shown human cocaine addicts have depleted enkephalin
mRNA and u opioid receptors associated with euphoria
and elevated dynorphin mRNA and « opioid binding
associated with dysphoria;!? however, chronic cocaine
administration in the rat elevates u opioid receptor
density,!? suggesting species-dependent chemical alter-
ation of the opiatergic tone of the CNS by cocaine.
Remarkably, other studies have shown that & receptor
antagonists prevent cocaine seeking behavior,1* cocaine
facilitation of reward,!® and development of morphine
tolerance and dependence.l® In addition, the é receptor
agonist DPLPE produces cocaine-appropriate responding
for reward which is not observed with the u agonist
DAMGO,!7 and other studies have shown that 5 receptor
agonists can modulate u receptor mediated antinocicep-
tion.!8 New, highly potent and selective nonpeptide &
opioid receptor agonists, antagonists, affinity labels, and
imaging agents for positron emission tomography (PET)
and single photon emission computed tomography
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(SPECT) studies are now required to optimally advance
the understanding of these effects as well as the develop-
ment of new medications which act on these sites. PET
and SPECT imaging agents offer opportunities for study
of the conscious human CNS in normal, abnormal, and
drug-altered states and may permit the development of
clinical correlates of opioid receptor dysfunction with
disease states.! Such drugs thus hold potential as new
agents for diagnosis of CNS disorders and for monitoring
drug therapy involving changes in the opioid receptor-
endorphin system. In such studies, nonpeptide ligands
are advantageous over peptides in that they are generally
less subject to metabolism and also can penetrate the
blood-brain barrier and therefore can be administrated
peripherally in vivo.1?

Recently, a novel nonpeptide & opioid receptor racemic
agonist, BW373U86 [(+)-1], was reported? and appears
to be a prime template for the discovery of new probes for
the & receptor system. Studies with this compound in
vitro,20-22{n vivo,2%22-27 and in ex vivo functional assays?%.22
collectively indicate it is a é-selective agonist which exerts
some of its effects through u opioid receptors. Studies
with the optically pure enantiomers of (+)-1 and related
compounds are now required to best utilize thisimportant
lead since it is well established that drug enantiomers can
show distinctly different and in some cases opposite
pharmacological effects.28

We now report the synthesis and absolute configuration
of the optically pure enantiomers of phenolic 1, its benzylic
epimer 10, and their methyl ethers 8 and 9, respectively.
Evaluation of these compounds have shown that one
compound in this series, the nonphenolic (+)-8 (SNC 80),
exhibits the remarkable u/6 selectivities in both receptor
binding and bioassays of approximately 2000-fold.

Our synthetic analysis involved assembly of these
molecules from two components: (a) the appropriate
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Table 1. Inhibition of Radioligand Binding to Rat Brain n
Receptors and Mouse Brain § Receptors by BW373U86, Its
Enantiomers 1, Benzylic Epimers 10, and Their Methyl Ethers 8
and 9

ICs, nM = SD
compound 4 binding® ICs ratio:

(configuration) u binding® ICg,nM %= SD u/d
(£)-1 (BW373U86) 46.3 % 4.42 0.92 = 0.06 50.3
(-)-1 (aS, 2R, 5S) 2322 £ 199 9.58 = 0.85 242
(+)-1 («R, 2S, 5R) 9.71 £ 0.37 0.31 £ 0.02 31
(-)-8 (aS,2R,5S) 9366 £ 798 >2000 nd
(+)-8 (aR,2S,5R) 2467 % 200 1.06 £ 0.14 2327

(SNC 80)
(-)-9 («R,2R,5S) 9138 £ 823 3.50 £ 0.39 2611
(+)-9 («S,2S,5R) 5712 % 457 56.5 £ 3.10 101
(-)-10 («R,2R,55) 167 £ 42 0.49 £ 0.07 341
(+)-10 («S,2S,5R) 426 £ 53 5.96 £ 0.53 71

¢ Binding against [SH]DAMGO in rat brain membranes.?2 ¢ Bind-
ing against [SH]DADLES3? in mouse brain membranes depleted of
functional u receptors by pretreatment with BIT.3

enantiomer of 1-allyl-trans-2,5-dimethyl-1,4-piperazine,
2, and (b) the benzhydryl chloride 7 as shown in Schemes
1 and 2. This route offers the advantage that it requires
only one optical resolution, that of the 1-allyl-trans-2,5-
dimethyl-1,4-piperazine (+)-2,% to obtain the enantiomers
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of 1 and its benzylic epimer 10. Optical resolution of (*)-
230 with (+)- and (-)-camphoric acids provided the
enantiomers of 2. Optical purity of (+)- and (-)-2 was
determined to be >98% by NMR of the ureas formed
with optically pure a-methylbenzyl isocyanate3! and was
determined to be >99% by HPLC of the ureas formed
with 1-naphthylisocyanate on a Chiralcel OD chiral
column. The optically pure (+)-enantiomer of 1, its
benzylic epimer (+)-10, and their methyl ethers (+)-8 and
(+)-9 were prepared as shown in Scheme 2. Repetition of
Scheme 2 with piperazine (+)-2 provided the corresponding
(-)-enantiomers of these compounds. The absolute con-
figuration of (+)-2 was determined as 28,5R by single-
crystal X-ray analysis of the salt with (+)-camphoric acid.
This result and the X-ray determination of relative
configuration of (-)-8 allowed the assignment of the
absolute configuration of the compounds shown in Scheme
2 and their enantiomers.

The affinities of the enantiomers and immediate
synthetic precursors of 1 for u opioid receptors and &
receptors (Table 1) were determined by inhibition of
binding of [EHIDAMGO to rat brain membranes3? and
[BH)DADLE? to mouse brain membranes depleted of p
binding sites by the pretreatment with the irreversible
ligand BIT, respectively. Nonspecific binding was
determined using 20 M levallorphan.

The enantiomers of 1 and their benzylic epimers 10 show
high affinity for é receptors with less affinity for u receptors
as shown in Table 1. The most potent compounds at §
receptors in the binding assays were (—-)-10 and (+)-1 which
showed subnanomolar affinity, but unfortunately these
compounds also showed significant u receptor binding
which limited their selectivity. Incontrast,strikingresults
were obtained with the corresponding methyl ethers of
these compounds in which g binding was virtually
eliminated with little effect of 6 binding. The resulting
(+)-8 and (-)-9 showed u/é selectivity ratios in binding
ranging of 2327- and 2611-fold, respectively. These
compounds are thus the most é selective (vs u) nonpeptide
agonists reported and rival some of the most selective
peptide ligands. It should be pointed out that in each of
the optical pairs 1, 8, 9, and 10, the enantiomer with the
aR absolute configuration is the most potent and é receptor
selective in the binding assays. The two compounds with
the highest binding selectivity, (+)-8 and (-)-9, are thus
of the R benzylic configuration but have the opposite
piperazine configuration, suggesting that the absolute
configuration of the benzylic position is the most important
stereochemical determinant of § receptor binding selectiv-
ity. The opioid activity (Table 2) of these two compounds
was next evaluated in the isolated mouse vas deferens
(MVD) and in guinea pig ileum (GPI) bioassays.35 These
studies revealed that the & selectivity of 1996 fold found

Table 2. Agonist Activity of Selected Compounds in the Mouse Vas Deferens (MVD) and Guinea Pig Ileum (GPI) Bioassays and
Antagonism of (+)-8 (SNC 80) by ICI174.864 (5 Antagonist, 1 uM) and CTAP (x Antagonist, 1 uM)

ICs = SEM, nM IC .
50 ratio:
compound GPI (u receptors) MVD (8 receptors) GPI (x)/MVD (8)

(£)-1 (BW373U86) 143 £ 16 0.2 £0.02 715
(+)-8 (SNC80) 5457 % 2052 2.73 £ 0.50 1996
(=)-9 1517 £ 214 30.9 £ 4.0 49
DPDPE 7300 £ 1700 51%x0.5 1800
[D-Ala2,Glut]deltorphin 15000 = 1000

(+)-8 + ICI174864 (SR)? -
(+)-8 + CTAP (SR) -

0.85 £ 0.07 17,000
3250 + 1830 (1190) -
5.34 £ 1.6 (1.9 -

¢ Data from ref 22. b Shift ratio, ICs in the presence of the antagonist/ICs in the absence of the antagonist.
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for (+)-8 paralleled that observed in the binding assays
and exceeded that of (%)-1, but this was not the case for
(-)-9, which only showed 49-fold selectivity. In this case,
the aR configuration in (-)-9 does not confer the same
level of selectivity in the bioassays as it did in the binding
assays. Further evidence for activity of (+)-8 at & opioid
receptors was obtained from ICs, values determined in
the presence of 1 uM of the § antagonist ICI 174,864% and
separately in the presence of 1 uM of the u antagonist
CTAP.2"* In these assays, ICI174,864 produced an ICs
shift of 1190-fold while CTAP only shifted the ICs 1.9-
fold, indicating that the é antagonist was 626 times more
effective in shifting the ICs of (+)-8. These results
collectively suggest that (+)-8 is a highly selective and
potent nonpeptide & agonist, which will be of substantial
value in further elucidation of § receptor function. In
vivostudies with (+)-8 are in progress and will be reported
in due course.

In conclusion, a practical synthesis and initial biological
characterization of optically pure isomers of (*)-1 and
related compounds are described. From this series of
compounds, two of the methyl ethers demonstrate high
affinity and selectivity toward é receptors in binding assays.
These data together with our results in the MVD and in
GPI indicate that (+)-8 is a highly selective and potent
nonpeptide é agonist with about 2000-fold é/u selectivity
in both the binding and bioassays. Since the cDNA of 4,
3, and « opioid receptors have now been cloned,3*4% and
their amino acid sequences expressed, (+)-8 and related
compounds can be utilized to compliment and extend
initial studies on a molecular basis* of the & receptor
interaction with (%)-1. These and subsequent investiga-
tions will provide valuable insight into the role of opioid
receptor subtypes in drug-seeking behavior, antinocice-
ption, and the development of tolerance and dependence
as well as other aspects of addictive diseases. Additional
structure-activity relationship studies with (+)-8 as a
template are in progress to develop highly selective affinity
labels, imaging agents, and other research tools.

Supplementary Material Available: X-ray diffraction data
for (+)-2-(+)-camphorate and (-)-8 including ORTEP drawings,
crystal coordinates, bond distances and bond angles (12 pages).
Ordering information is given on any current masthead page.
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